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the cores are pressed on to the sample. The results pre-
sented in Table IT were obtained using small axis pressure
P=600 N. With an increase of pressure in the range of
600-6000 N, the gap d, decreased to about half its size.

2) An interesting dependence was obtained in investi-
gating the imaginary part of permittivity of metalized and
nonmetalized samples as a function of pressure. As an
example of these measurements, one sample (of ceramic
N-47) is presented in Fig. 7.

On the basis of the ¢’ measurement as a function of
pressure, it can be established that a more accurate
measure of material losses can be obtained for nonmet-
alized samples due to the elimination of a significant
portion of the contact resistivity (core-metalized layer) in
the dissipation of energy. In general, with a metalized
layer the €” results are overestimated; without it they are
underestimated. In order to increase accuracy, it is neces-
sary to use significant pressure P, which, however, must
be smaller than the force which can destroy the sample.
Associated with this is the need to use a hard material for
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the contact surface of the core, so that it will not be
damaged by the hard ceramic sample.

III.

In Part A, a theoretical analysis of the measurement
method was present while in Part B, an experimental
analysis of measurement error showed that the author’s
proposed measurement method for thin samples in a
reentrant cavity allows for é

SUMMARY

€ measurements in a wide
range of materials (¢ =2-300, tané=10"5-10"") with an
adequate technical accuracy 8e’<1 percent, §(tand)<5
percent+5x 1075,
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Wave Propagation through Weakly Anisotropic
Straight and Curved Rectangular
Dielectric Optical Guides
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Abstract—Wave propagation through weakly anisotropic straight and
curved dielectric rectangular guides is studied using a coupled mode

approach. The propagation constant, thus found, can be computed very
easlly if Marcatil’s approximate field expressions for an isotropic guide
are used. The result for the uniaxial case can then be extended for the
biaxisl crystal to the first order of approximation.

I. INTRODUCTION

NELECTRIC WAVEGUIDES of different shapes
ave found wide use in integrated optics and optical
communication systems. The basic structures that have
been studied extensively for optical applications are, in
general, isotropic slabs, rectangular and circular cylindri-
cal guides. However, in many diverse applications, such as
dielectric cavity resonators (DCR), laser and masers, ESR
spectroscopy, nonlinear optical devices, etc., the interac-
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tion may involve an anisotropic dielectric medium. Sym-
metrical [1], [2] as well as hybrid [3], [4] mode propagation
in a uniaxial anisotropic rod have been extensively
studied. The theory has since been extended to the weakly
anisotropic case [5], biaxial rod [6], and hollow axially
anisotropic structure [7] with possible applications in reti-
nal receptor modeling, crystal-core guides, and gas laser
resonating structures, respectively.

The work on planner structures, however, seems incom-
plete. The effect of anisotropy on a slab guide [8], [9] and
mode coupling in general anisotropic guides [10] have
been studied recently, but no reported result for rectangu-
lar guides is known to the present author. The difficulty in
obtaining an exact analytical solution for the propagation
constant for a simpler isotropic rectangular guide lies in
matching boundary conditions everywhere. A lengthy
numerical method [11] may be used, but an approximate
solution [12], [13] offers better insight to the propagation
and field behavior of the modes.
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The natural modes of rectangular dielectric guides are
all hybrid, with three components of both the electric and
magnetic fields present. For weakly guiding structures
they can be classified in EH (x-polarized) and EH}, (y-
polarized) modes. For anisotroplc guides, the TE and TM
parts of hybrid mode fields have different transverse wave
numbers and a single transcendental expression for the
propagation constant cannot be derived by matching the
approximate fields along the boundary. A lengthy numeri-
cal solution is possible also in this case, but the following
approximate analysis can be useful in finding the propa-
gation behavior of the guides.

II. THEORY

The sectional diagram of the guide of size aXb is
shown in Fig, 1. Consider at present that the guide is
straight. The refractive indexes inside and outside the
outline are [n] and n,, respectively. [n] is a diagonal tensor
with entries n,, n, and n, in x, y, and z direction,
respectively. For uniaxial case n, =n, and propagation is
possible if min n,>n,,i=x,y. If |n,/n,~1|«]1, it can be
shown that continuity of fields, except at the region shown
hatched in Fig. 1, gives the propagation constant for
straight isotropic [n, =n,=n,] waveguide to sufficient ac-
curacy [12]. If this propagation constant is known and
if the anisotropic guide is assumed to be a perturbation of
the isotropy, then the change in propagation constant of
the anisotropic guide from that of the isotropic one can be
derived by a coupled mode theory using the ideal mode
approach given below.

The electric and magnetic fields of the anisotropic guide
satisfy the following Maxwell’s equations for a time factor
exp [iwr]

H=iwD, D=¢[n*]E 4}

Decomposing them into transverse components gives
~ (i)Y NV, B) + (00T /22)=iwD,  (3)

(1 iweo)Vp[(1/ 12)V \H, |+ (6\9E,/32) = — iwoH,
4
where subscript ¢ denotes transverse component,
E,H,pg,€, denote the electric and magnetic field, free
space permeability, and permittivity, respectively, and é,

represents a unit vector in z direction.
For an isotropic guide we get, using n, =n,=n,=ny,

-1/ iWI"o)Vz/\(Vt/\EOz) - iﬁo(éz/\ﬁ 0:) = iWBo: )

(l/iweo)vt/\[(l/ng)vt/\ﬁm] - iBO(éz/\EOt)= — iwpoHy,

6
where S, is the propagation constant of isotropic guide.
The subscript 0 has been used to distinguish the isotropic
fields.

In coupled mode theory [14] the perturbed fields are
represented as a sum of an infinite number of guided and
radiation mode fields of the ideal guide. The representa-
tion gives the amount of power coupled among different
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Fig. 1. Anisotropic dielectric rectangular guide structure.

- guided and radiation modes. Since the perturbation in the

present case is directional and independent of position in
the guide, it does not produce coupling between different
ideal modes, but changes the propagation constant of
each ideal mode of the isotropic guide. So, let

E,=ay(2)E,, Q)
171=b0(z)1701' (8)

The assumptions (7) and (8) remains valid to the first
order if the change in propagation constant stated above
is small, i.e., if anisotropy does not change the transverse
nature of the fields of the isotropic guide appreciably.
This is so for the weakly anisotropic case [1—n, /n,]<1.

Using (5) and (6) and (7) and (8), (3) and (4) become

(dby/ dz + iﬁoao)(éz/\ff Ot) - iw(aOD_Ot - D—t) =0 (9
(day/dz— iBobo)(éz/\E_or)
boV [ 12— 15 2][ VipHy | =0. (10)

Incorporating the power orthogonality relations in (9) and
(10) we get

iwe,

db,/dz + zﬁoao

(11)
(12)

kay
kbg
where

= L]

n?—nl)E, E,
+(n2—nd)Ey By |dxdy (13)

tweoP f f Hgv A

. 1_1
P

)v, ,\H“O,}dxdy (14)
0

with P as the power flowing in z direction of the isotropic
guide, i.e.,

P== f f e, By, HE dxdy. (15)
After a lengthy reordering as in [14], equations (11)~(14)
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can be written as
da,/dz = —ifya,+ K,a, (16)

where

=2 f [n — 1) Eq, Ef, +(n2— nd) Eq, E3,

n2
+ (—n—‘;)(nj—ng)EOzEg, dxdy. (17)

z

Let day/dz = — ifa,, where B=B,+Ap is the propaga-
tion constant of the anisotropic guide. K, vanishes outside
the guide where n,=ny,i=x,y,z. Then (16) becomes

=2 f f [(n — Q) Ey, Eg, +(n?~n) Ey EX,

2
+(n )(n —n3)Ey, ES, |dxdy. (18)
n?

z

The equation is quite general to account for uniaxial as
well as biaxial anisotropic guides and gives an interesting
condition of AB =0 for biaxial case. If the ideal guide is of
square cross section, E, E§, = E, Ef is satisfied for the
modes with same wave number in x and y direction. Now,
if we choose ny=n, and the biaxial guide is such that
n,=[(n2+n)/2]'2, ‘then AB=0.

For uniaxial guide, we choose ny=n,=n,. Then (18)
reduces to

s=5 [ [ ( = )(n ~nd) By, Eg,dxdy. (18a)
-5 n;

The same expression (18a) can be obtained using a
variational theorem [16] if it is understood that the effec-
tive refractive index variation in the z direction due to
anisotropy is (ny/n,)(n2— n})'/2 and this variation effects
the change AB in the propagation constant of the isotropic
guide.

The integral in (18a) can very easily be evaluated if the
approximate expressions [12] for the isotropic rectangular
guide fields are used. The fields are

Ey, =Acosk(x+&)cosk,(y+m)

Ho, = — A(eo/ wo)'/*ni(k, / k) (e / Bo)
-sink, (x+§&)sinK (y+n) (20)

where K=2x/A. K, and k, are wave numbers with ¢ and
7 as the phase factors in x and y directions, respectively.
The phase factors account for the phase of the mode at
the center of the guide. For HE,, modes k, and k, are
given, respectively, by

(19)

-1
A
k="C 04— (1)
b [ n%vrb(n%—ni)'”}
.4 PO S 22)
a na(nt—n )1/2

and B, is found from kZ+ k2= K’n}— Bg.
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ITI. RESULTS AND DISCUSSION

The change in propagation constant of HE}, mode of
uniaxial guide is shown in Figs. 2 and 3. In Fig. 2, AB/ 8,
is plotted against a/A for different n, keeping n,/n, and
ny/n, constant, where B, and A are the free space propa-
gation constant and wavelength, respectively. It is noted
that the variation of propagation constant decreases ex-
ponentially with the dimension of the guide. This is be-
cause the fields become more transverse in nature and
Ey, E§,/ P decreases with increased dimension. For small
a/\, where the mode is near cutoff, the approximate
relations (19)—(22) are not valid. A harmonic series repre-
sentation [11] of E,, and H,, can be used in (18a) to find
the change in propagation constant. In Fig. 3, AB/B, is
plotted against a/A for different n, keeping n, and n,
constant. It is seen that the variation in propagation
constant is larger with larger »,. This shows the effect of
anisotropy in changing the propagation behavior of iso-
tropic guide. The result for the first higher order mode
HE7, we also calculated, but AB/ B, does not differ more
than 0.1 percent from that of HE}, mode.

An examination of equation (18a) shows that AB/B,
may be positive or negative depending on whether n, is
larger than n, or not. The result may be useful in match-
ing the propagation constant of one guide with that of
another.

The theory can be extended to curved guides to the
extent that guide mode orthogonality is still valid and
normalization with respect to power P still holds. In that
case Marcatill’s approach [15] can be used to find the
mode conversion and loss factor of the structure. For a
curvature in y direction, i.e., axis of curvature parallel to
the x axis, as shown in Fig. 1 by dotted lines, the trans-
verse wave number k, remains unchanged while k, is
modified to

=k, (1+ C—jI) (23)
where k, and k, are given by (21) and (22) and

8 (l_n_i)—m( nzkyb )2(1)3 1__(_]("’_‘4)2]1/2
2k3R n3 By b .

R’ k,A4\? 2¢ Y
RCXp"—3— 1-‘(7) 1+~I;z;
RPN 2+2(ﬂ)2(£) 1_(_’&1)2 2
ng T ng b a
)
c=_1 (”_b)s_l_ (25)
C2kb\ A4 R
where
R'= 27r3R _ A
7 ATy
B 2(n}—n3)

and R is the radius of curvature.
To get an idea how the commonly known anisotropic
materials behave, the result for straight and curved guide
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Fig. 2. Variation of A/, of HE}, mode with a/A for different ny
with #n,/ny=0.9375, n,/ne=10125, and a=b.

40
35
30
25+

20
ng =1'62\'63 164

2p/P, X10

Fig. 3. Variation A8/8 of HE]; mode with /A for different n, with
ng=16, n,= 1.5, and a=b.

of dimensions a=5u, b=2.5p at A=0.6328p, n,=0.95n,,
and R=1000A is given in Table 1. It is seen that the
change in propagation constant from the isotropic to
anisotropic case increases with the anisotropy factor 4=
n,/n, The loss function I is more dependent on the
transverse refractive index n, and increases with n, de-
creasing. However, the variation of I with that of 4 seems
to be less prominent.

Equation (18) can also be applied to the slab and
circular cylindrical anisotropic guides. For cylindrical
guides, all parameters in (18) has to be transformed into
cylindrical coordinate system. Furthermore, since exact
analytical relation is available for the propagation con-
stant of a uniaxial cylindrical guides [3], equation (18) is
applicable to the biaxial case with better accuracy. The

TABLEI
PROPAGATION CONSTANT CHANGE AND LOss FUNCTION OF SOME
AX1SOTROPIC MATERIAL GUIDES FORH E{;, Mobe

Material n, A aB/B, 1
x 1dt3 x 10%2
Titenia [ T4 02] 2.71 0,8941 7,8926 2.2612
Calcite [Ca cns] 1,66 0.8975 3,7920 3,5851
Tourmaline 1.84 0.9879 0,3800 33,6218

analysis, however, is restricted to materials with diagonal
refractive index tensor. For a more general case, i.e., for
the nondiagonal entries in refractive index tensor, the
modes are coupled among themselves as they propagate
and the simple assumptions (7) and (8) no longer remain
valid.
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