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the cores are pressed on to the sample. The results pre-

sented in Table II were obtained using small axis pressure

P= 600 N. With an increase of pressure in the range of

600-6000 N, the gap ~ decreased to about half its size.

2) An interesting dependence was obtained in investi-

gating the imaginary part of permittivity of metalized and

nonmetalized samples as a function of pressure. As an

example of these measurements, one sample (of ceramic

N-47) is presented in Fig. 7.

On the basis of the c“ measurement as a function of

pressure, it can be established that a more accurate

measure of material losses can be obtained for nonmet-

alized samples due to the elimination of a significant

portion of the contact resistivity (core-metalized layer) in

the dissipation of energy. In general, with a metalized

layer the c“ results are overestimated; without it they are

underestimated. In order to increase accuracy, it is neces-

sary to use significant pressure P, which, however, must

be smaller than the force which can destroy the sample.

Associated with this is the need to use a hard material for

the contact surface of the core, so that it will not be

damaged by the hard ceramic sample.

III. SUMMARY

In Part A, a theoretical analysis of the measurement

method was present while in Part B, an experimental

analysis of measurement error showed that the author’s

proposed measurement method for thin samples in a

reentrant cavity allows for 2 measurements in a wide

range of materials (e’= 2–300, tan~ = 10–5– 10– 1, with an

adequate technical accuracy &’< 1 percent, i3(tan8) <5

percent +5X 10-5.
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I. INTRODUC’HON
?

D

ELECTRIC WAVEGUIDES of different shapes

ave found wide use in integrated optics and optical

communication systems. The basic structures that have

been studied extensively for optical applications are, in

general, isotropic slabs, rectangular and circular cylindri-

cal guides. However, in many diverse applications, such as

dielectric cavity resonators (DCR), laser and masers, ESR

spectroscopy, nonlinear optical devices, etc., the interac-
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tion may involve an anisotropic dielectric medium. Sym-

metrical [1], [2] as well as hybrid [3], [4] mode propagation

in a uniaxial anisotropic rod have been extensively

studied. The theory has since been extended to the weakly

anisotropic case [5], biaxial rod [6], and hollow axially

anisotropic structure [7] with possible applications in reti-

nal receptor modeling, crystal-core guides, and gas laser

resonating structures, respectively.

The work on planner structures, however, seems incom-

plete. The effect of anisotropy on a slab tide [8], [9] and

mode coupling in general anisotropic guides [10] have

been studied recently, but no reported result for rectangu-

lar guides is known to the present author. The difficulty in

obtaining an exact analytical solution for the propagation

constant for a simpler isotropic rectangular guide lies in

matching boundary conditions everywhere. A lengthy

numerical method [11] may be used, but an approximate

solution [12], [13] offers better insight to the propagation

and field behavior of the modes.
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The natural modes of rectangular dielectric guides are

all hybrid, with three components of both the electric and

magnetic fields present. For weakly guiding structures

they can be classified in EH~~(x-polarized) and EH~(y-

polarized) modes. For anisotropic guides, the TE and TM

parts of hybrid mode fields have different transverse wave

numbers and a single transcendental expression for the

propagation constant cannot be derived by matching the

approximate fields along the boundary. A lengthy numeri-

cal solution is possible also in this case, but the following

approximate analysis can be useful in finding the propa-

gation behavior of the guides.

H. THEORY

The sectional diagram of the guide of size a x h is

shown in Fig. 1. Consider at present that the guide is

straight. The refractive indexes inside and outside the

outline are [n] and nz, respectively. [n] is a diagonal tensor

with entries nx, ~, and n= in x, y, and z direction,

respectively. For uniaxkd case nX= ~ and propagation is

possible if tin ni >nz, i= x,y. If lni/n2– 11<<1, it can be

shown that continuity of fields, except at the region shown

hatched in Fig. 1, gives the propagation constant for

straight isotropic [nX = ~ = n=] waveguide to sufficient ac-

curacy [12]. If this propagation constant is known and

if the anisotropic guide is assumed to be a perturbation of

the isotropy, then the change in propagation constant of

the anisotropic guide from that of the isotropic one can be

derived by a coupled mode theory using the ideal mode

approach given below.

The electric and magnetic fields of the anisotropic guide

satisfy the following Maxwell’s equations for a time factor

exp [bvt]

R= iw5, D=@2]E (1)

F= – iwpo~. (2)

Decomposing them into transverse components gives

– (~/iwpO)vt~(vt*E) + (2ZAaEi/az) = iwn (3)

(1/iw60)vt~[(1/n?) vt~Et] + (2zAa@z) = – ‘WPOE

(4)

where subscript t denotes transverse component,

~, ~, ~, CO denote the electric and magnetic field, free

space permeability, and permittivity, respectively, and 4Z

represents a unit vector in z direction.

For an isotropic guide we get, using nX= nY= n= = no,

– (~/iw~o)v~*(vtAZOt )-ipo(i?zA~o~)=iwfio, (5)

(l/iw%)vtA~(l/n~)vtA~Ot] – ‘80(&. AEOt) = – ‘wpOF.t

(6)

where PO is the propagation constant of isotropic guide.

The subscript O has been used to distinguish the isotropic

fields,
In coupled mode theory [14] the perturbed fields are

represented as a sum of an infinite number of guided and

radiation mode fields of the ideal guide. The representa-

tion gives the amount of power coupled among different
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Fig. 1. Anisotropic dielectric rectangular guide structure.

guided and radiation modes. Since the perturbation in the

present case is directional and independent of position in

the guide, it does not produce coupling between different

ideal modes, but changes the propagation constant of

each ideal mode of the isotropic guide. So, let

Et= ao(z)~o, (7)

E,= bo(z)fior. (8)

The assumptions (7) and (8) remains valid to the first

order if the change in propagation constant stated above

is small, i.e., if anisotropy does not change the transverse

nature of the fields of the isotropic guide appreciably.

This is so for the weakly anisotropic case [1 – nX/nZ]< 1.

Using (5) and (6) and (7) and (8), (3) and (4) become

(dbO/dz+ i~oao)(3zAEo,) - iw(ao~o, -~) =0 (9)

+ -!- boV,A[nz–2-n~2] [V,ARO,] =0. (10)
iwco

Incorporating the power orthogonality relations in (9) and

(10) we get

dbo/dz + i~oao = kao (11)

dao/dz + i~obo = kbo (12)

where

+(~2–n~)EWE&,]dx@ (13)

dx@ (14)

with P as the power flowing in z direction of the isotropic

guide, i.e.,

After a lengthy reordering as in [14], equations (11)-(14)
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can be written as

dao/dz = – i~oao + Kr a. (16)

L

() I+ ~ (n;– n:)&17:z dxdy. (17)
n:

Let dao/dz = – ifiao, where ~=&+ A~ is the propaga-

tion constant of the anisotropic guide. Kt vanishes outside

the guide where ni = no, i= x,y,z. Then (16) becomes

The equation is quite general to account for uniaxial as

well as biaxial anisotropic guides and gives an interesting

condition of A~ = O for biaxial case. If the ideal guide is of

square cross section, EoXE& = E@ E&, is satisfied for the

modes with same wave number in x and y direction. Now,

if we choose no= n= and the biaxial guide is such that

n== [(n; + q2)/2]1/2, then A~ = O.

For uniaxial guide, we choose nO= nX= ~. Then (18)
reduces to

The same expression (18a) can be obtained using a

variational theorem [16] if it is understood that the effec-

tive refractive index variation in the z direction due to

anisotropy is (no/ nz)(n$ – n~)1f2 and this variation effects

the change A~ in the propagation constant of the isotropic

guide.

The integral in (18a) can very easily be evaluated if the

approximate expressions [12] for the isotropic rectangular

guide fields are used. The fields are

Eoz =A coskx(x + g)cosky(y + q) (19)

Ho= = – A (~o/~o)’’2nNkY/kx) (k/flo)

“sinkX(x + ~)sin~(y + q) (20)

where K= 2r/A. KX and kY are wave numbers with ~ and

q as the phase factors in x and y directions, respectively.

The phase factors account for the phase of the mode at

the center of the guide. For HE~ modes kX and kY are

given, respectively, by

[ 1
-1

kX=~ 1+
n~~

(21)
n$rb(n: – n;) 1’2

and /30 is found from k; + kj2= K2n~ – ~~.
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III. RESULTS AND DISCUSSION

The change in propagation constant of HE~l mode of

uniaxial guide is shown in Figs. 2 and 3. In Fig. 2, A~/@o

is plotted against a/A for different no keeping no/n2 and

no/ nZ constant, where /30 and A are the free space propa-

gation constant and wavelength, respectively. It is noted

that the variation of propagation constant decreases ex-

ponentially with the dimension of the guide. This is be-

cause the fields become more transverse in nature and

EozE$z/P decreases with increased dimension. For small

a/A, where the mode is near cutoff, the approximate

relations (1 9)–(22) are not valid. A harmonic series repre-

sentation [11] of Eoz and HO= can be used in (18a) to find

the change in propagation constant. In Fig. 3, A/3/~. is

plotted against a/X for different n, keeping no and n2

constant. It is seen that the variation in propagation

constant is larger with larger n=. This shows the effect of

anisotropy in changing the propagation behavior of iso-

tropic guide. The result for the first higher order mode

HE~z we also calculated, but A~/~o does not differ more

than 0.1 percent from that of HE~l mode.

An examination of equation (18a) shows that A~//lo

may be positive or negative depending on whether n= is

larger than no or not. The result may be useful in match-

ing the propagation constant of one guide with that of

another.

The theory can be extended to curved guides to the

extent that guide mode orthogonality is still valid and

normalization with respect to power P still holds. In that

case Marcatill’s approach [15] can be used to find the

mode conversion and loss factor of the structure. For a

curvature in y direction, i.e., axis of curvature parallel to

the x axis, as shown in Fig. 1 by dotted lines, the trans-

verse wave number kX remains unchanged while kY is

modified to

k;= k,(l + C–jl) (23)

where k. and kY are given by (21) and (22) and

1-[1-(%Y][YT+2(%Y($
(24)

1

()

~b31

C=q 7 F
(25)

where

and R is the radius of curvature.

To get an idea how the commonly known anisotropic

materials behave, the result for straight and curved guide
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Fig. 2. Variation of AB//3o of HEtl mode wi~ a/~ for different %

with n2/no=0.9375, nz/no= 1.0125, and a = b.
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Fig. 3. Variation Afl//l of HE~l mode with a/A for different n, with

no=l.6, n2=l.5, and a=b.

of dimensions a = 5p, b =2.5 p at A= 0.6328p, n2 = 0.95no,
and R = 1000A is given in Table I. It is seen that the

change in propagation constant from the isotropic to
anisotropic case increases with the anisotropy factor A =

it2/ nv The loss function I is more dependent on the

transverse refractive index no and increases with no de-

creasing. However, the variation of I with that of A seems

to be less prominent.
Equation (18) can also be applied to the slab and

circular cylindrical anisotropic guides. For cylindrical

guides, all parameters in (18) has to be transformed into

cylindrical coordinate system. Furthermore, since exact

analytical relation is available for the propagation con-

stant of a uniaxial cylindrical guides [3], equation (18) is

applicable to the biaxial case with better accuracy. The

TABLE I

PROPM3AT20N CONSTANT WC3E ‘mm LOSS F1JNCTION OF SOW
AN2SOTROPIC MATEXUAL GIJ33MX+FORH E~ M0Dr3

T.itania [7i 02] 2.71 0.8941 7.8926 2.2612

calcite [!2s C03] 1.66 0.8975 3.7920 3 .5s51

Tourmelins 1.64 0.9879 o.3aoo 3.6218

analysis, however, is restricted to materials with diagonal

refractive index tensor. For a more general case, i.e., for

the nondiagonal entries in refractive index tensor, the

modes are coupled among themselves as they propagate

and the simple assumptions (7) and (8) no longer remain

valid.
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